1 /* 2 * Copyright (c) 2012-2017 The ANTLR Project. All rights reserved. 3 * Use of this file is governed by the BSD 3-clause license that 4 * can be found in the LICENSE.txt file in the project root. 5 */ 6 7 module antlr.v4.runtime.atn.PredictionMode; 8 9 import antlr.v4.runtime.atn.ATN; 10 import antlr.v4.runtime.atn.ATNConfig; 11 import antlr.v4.runtime.atn.ATNConfigSet; 12 import antlr.v4.runtime.atn.ATNState; 13 import antlr.v4.runtime.atn.AltAndContextMap; 14 import antlr.v4.runtime.atn.PredictionModeConst; 15 import antlr.v4.runtime.atn.RuleStopState; 16 import antlr.v4.runtime.atn.ContextMapObjectEqualityComparator; 17 import antlr.v4.runtime.atn.SemanticContext; 18 import antlr.v4.runtime.misc.BitSet; 19 import std.typecons; 20 21 // Class PredictionMode 22 /** 23 * This enumeration defines the prediction modes available in ANTLR 4 along with 24 * utility methods for analyzing configuration sets for conflicts and/or 25 * ambiguities. 26 */ 27 class PredictionMode 28 { 29 30 /** 31 * Computes the SLL prediction termination condition. 32 * 33 * <p> 34 * This method computes the SLL prediction termination condition for both of 35 * the following cases.</p> 36 * 37 * <ul> 38 * <li>The usual SLL+LL fallback upon SLL conflict</li> 39 * <li>Pure SLL without LL fallback</li> 40 * </ul> 41 * 42 * <p><strong>COMBINED SLL+LL PARSING</strong></p> 43 * 44 * <p>When LL-fallback is enabled upon SLL conflict, correct predictions are 45 * ensured regardless of how the termination condition is computed by this 46 * method. Due to the substantially higher cost of LL prediction, the 47 * prediction should only fall back to LL when the additional lookahead 48 * cannot lead to a unique SLL prediction.</p> 49 * 50 * <p>Assuming combined SLL+LL parsing, an SLL configuration set with only 51 * conflicting subsets should fall back to full LL, even if the 52 * configuration sets don't resolve to the same alternative (e.g. 53 * {@code {1,2}} and {@code {3,4}}. If there is at least one non-conflicting 54 * configuration, SLL could continue with the hopes that more lookahead will 55 * resolve via one of those non-conflicting configurations.</p> 56 * 57 * <p>Here's the prediction termination rule them: SLL (for SLL+LL parsing) 58 * stops when it sees only conflicting configuration subsets. In contrast, 59 * full LL keeps going when there is uncertainty.</p> 60 * 61 * <p><strong>HEURISTIC</strong></p> 62 * 63 * <p>As a heuristic, we stop prediction when we see any conflicting subset 64 * unless we see a state that only has one alternative associated with it. 65 * The single-alt-state thing lets prediction continue upon rules like 66 * (otherwise, it would admit defeat too soon):</p> 67 * 68 * <p>{@code [12|1|[], 6|2|[], 12|2|[]]. s : (ID | ID ID?) ';' ;}</p> 69 * 70 * <p>When the ATN simulation reaches the state before {@code ';'}, it has a 71 * DFA state that looks like: {@code [12|1|[], 6|2|[], 12|2|[]]}. Naturally 72 * {@code 12|1|[]} and {@code 12|2|[]} conflict, but we cannot stop 73 * processing this node because alternative to has another way to continue, 74 * via {@code [6|2|[]]}.</p> 75 * 76 * <p>It also let's us continue for this rule:</p> 77 * 78 * <p>{@code [1|1|[], 1|2|[], 8|3|[]] a : A | A | A B ;}</p> 79 * 80 * <p>After matching input A, we reach the stop state for rule A, state 1. 81 * State 8 is the state right before B. Clearly alternatives 1 and 2 82 * conflict and no amount of further lookahead will separate the two. 83 * However, alternative 3 will be able to continue and so we do not stop 84 * working on this state. In the previous example, we're concerned with 85 * states associated with the conflicting alternatives. Here alt 3 is not 86 * associated with the conflicting configs, but since we can continue 87 * looking for input reasonably, don't declare the state done.</p> 88 * 89 * <p><strong>PURE SLL PARSING</strong></p> 90 * 91 * <p>To handle pure SLL parsing, all we have to do is make sure that we 92 * combine stack contexts for configurations that differ only by semantic 93 * predicate. From there, we can do the usual SLL termination heuristic.</p> 94 * 95 * <p><strong>PREDICATES IN SLL+LL PARSING</strong></p> 96 * 97 * <p>SLL decisions don't evaluate predicates until after they reach DFA stop 98 * states because they need to create the DFA cache that works in all 99 * semantic situations. In contrast, full LL evaluates predicates collected 100 * during start state computation so it can ignore predicates thereafter. 101 * This means that SLL termination detection can totally ignore semantic 102 * predicates.</p> 103 * 104 * <p>Implementation-wise, {@link ATNConfigSet} combines stack contexts but not 105 * semantic predicate contexts so we might see two configurations like the 106 * following.</p> 107 * 108 * <p>{@code (s, 1, x, {}), (s, 1, x', {p})}</p> 109 * 110 * <p>Before testing these configurations against others, we have to merge 111 * {@code x} and {@code x'} (without modifying the existing configurations). 112 * For example, we test {@code (x+x')==x''} when looking for conflicts in 113 * the following configurations.</p> 114 * 115 * <p>{@code (s, 1, x, {}), (s, 1, x', {p}), (s, 2, x'', {})}</p> 116 * 117 * <p>If the configuration set has predicates (as indicated by 118 * {@link ATNConfigSet#hasSemanticContext}), this algorithm makes a copy of 119 * the configurations to strip out all of the predicates so that a standard 120 * {@link ATNConfigSet} will merge everything ignoring predicates.</p> 121 */ 122 public static bool hasSLLConflictTerminatingPrediction(PredictionModeConst mode, ATNConfigSet configs) 123 { 124 /* Configs in rule stop states indicate reaching the end of the decision 125 * rule (local context) or end of start rule (full context). If all 126 * configs meet this condition, then none of the configurations is able 127 * to match additional input so we terminate prediction. 128 */ 129 if (allConfigsInRuleStopStates(configs)) { 130 return true; 131 } 132 133 // pure SLL mode parsing 134 if (mode == PredictionModeConst.SLL) { 135 // Don't bother with combining configs from different semantic 136 // contexts if we can fail over to full LL; costs more time 137 // since we'll often fail over anyway. 138 if (configs.hasSemanticContext) { 139 // dup configs, tossing out semantic predicates 140 ATNConfigSet dupli = new ATNConfigSet(); 141 foreach (ATNConfig c; configs.configs) { 142 c = new ATNConfig(c,SemanticContext.NONE); 143 dupli.add(c); 144 } 145 configs = dupli; 146 } 147 // now we have combined contexts for configs with dissimilar preds 148 } 149 150 // pure SLL or combined SLL+LL mode parsing 151 152 BitSet[] altsets = getConflictingAltSubsets(configs); 153 bool heuristic = 154 hasConflictingAltSet(altsets) && !hasStateAssociatedWithOneAlt(configs); 155 return heuristic; 156 157 } 158 159 /** 160 * Checks if any configuration in {@code configs} is in a 161 * {@link RuleStopState}. Configurations meeting this condition have reached 162 * the end of the decision rule (local context) or end of start rule (full 163 * context). 164 * 165 * @param configs the configuration set to test 166 * @return {@code true} if any configuration in {@code configs} is in a 167 * {@link RuleStopState}, otherwise {@code false} 168 */ 169 public static bool hasConfigInRuleStopState(ATNConfigSet configs) 170 { 171 foreach (ATNConfig c; configs.configs) { 172 if (c.state.classinfo == RuleStopState.classinfo) { 173 return true; 174 } 175 } 176 return false; 177 } 178 179 /** 180 * Checks if all configurations in {@code configs} are in a 181 * {@link RuleStopState}. Configurations meeting this condition have reached 182 * the end of the decision rule (local context) or end of start rule (full 183 * context). 184 * 185 * @param configs the configuration set to test 186 * @return {@code true} if all configurations in {@code configs} are in a 187 * {@link RuleStopState}, otherwise {@code false} 188 */ 189 public static bool allConfigsInRuleStopStates(ATNConfigSet configs) 190 { 191 foreach (ATNConfig config; configs.configs) { 192 if (config.state.classinfo != RuleStopState.classinfo) { 193 return false; 194 } 195 } 196 return true; 197 } 198 199 /** 200 * Full LL prediction termination. 201 * 202 * <p>Can we stop looking ahead during ATN simulation or is there some 203 * uncertainty as to which alternative we will ultimately pick, after 204 * consuming more input? Even if there are partial conflicts, we might know 205 * that everything is going to resolve to the same minimum alternative. That 206 * means we can stop since no more lookahead will change that fact. On the 207 * other hand, there might be multiple conflicts that resolve to different 208 * minimums. That means we need more look ahead to decide which of those 209 * alternatives we should predict.</p> 210 * 211 * <p>The basic idea is to split the set of configurations {@code C}, into 212 * conflicting subsets {@code (s, _, ctx, _)} and singleton subsets with 213 * non-conflicting configurations. Two configurations conflict if they have 214 * identical {@link ATNConfig#state} and {@link ATNConfig#context} values 215 * but different {@link ATNConfig#alt} value, e.g. {@code (s, i, ctx, _)} 216 * and {@code (s, j, ctx, _)} for {@code i!=j}.</p> 217 * 218 * <p>Reduce these configuration subsets to the set of possible alternatives. 219 * You can compute the alternative subsets in one pass as follows:</p> 220 * 221 * <p>{@code A_s,ctx = {i | (s, i, ctx, _)}} for each configuration in 222 * {@code C} holding {@code s} and {@code ctx} fixed.</p> 223 * 224 * <p>Or in pseudo-code, for each configuration {@code c} in {@code C}:</p> 225 * 226 * <pre> 227 * map[c] U= c.{@link ATNConfig#alt alt} # map hash/equals uses s and x, not 228 * alt and not pred 229 * </pre> 230 * 231 * <p>The values in {@code map} are the set of {@code A_s,ctx} sets.</p> 232 * 233 * <p>If {@code |A_s,ctx|=1} then there is no conflict associated with 234 * {@code s} and {@code ctx}.</p> 235 * 236 * <p>Reduce the subsets to singletons by choosing a minimum of each subset. If 237 * the union of these alternative subsets is a singleton, then no amount of 238 * more lookahead will help us. We will always pick that alternative. If, 239 * however, there is more than one alternative, then we are uncertain which 240 * alternative to predict and must continue looking for resolution. We may 241 * or may not discover an ambiguity in the future, even if there are no 242 * conflicting subsets this round.</p> 243 * 244 * <p>The biggest sin is to terminate early because it means we've made a 245 * decision but were uncertain as to the eventual outcome. We haven't used 246 * enough lookahead. On the other hand, announcing a conflict too late is no 247 * big deal; you will still have the conflict. It's just inefficient. It 248 * might even look until the end of file.</p> 249 * 250 * <p>No special consideration for semantic predicates is required because 251 * predicates are evaluated on-the-fly for full LL prediction, ensuring that 252 * no configuration contains a semantic context during the termination 253 * check.</p> 254 * 255 * <p><strong>CONFLICTING CONFIGS</strong></p> 256 * 257 * <p>Two configurations {@code (s, i, x)} and {@code (s, j, x')}, conflict 258 * when {@code i!=j} but {@code x=x'}. Because we merge all 259 * {@code (s, i, _)} configurations together, that means that there are at 260 * most {@code n} configurations associated with state {@code s} for 261 * {@code n} possible alternatives in the decision. The merged stacks 262 * complicate the comparison of configuration contexts {@code x} and 263 * {@code x'}. Sam checks to see if one is a subset of the other by calling 264 * merge and checking to see if the merged result is either {@code x} or 265 * {@code x'}. If the {@code x} associated with lowest alternative {@code i} 266 * is the superset, then {@code i} is the only possible prediction since the 267 * others resolve to {@code min(i)} as well. However, if {@code x} is 268 * associated with {@code j>i} then at least one stack configuration for 269 * {@code j} is not in conflict with alternative {@code i}. The algorithm 270 * should keep going, looking for more lookahead due to the uncertainty.</p> 271 * 272 * <p>For simplicity, I'm doing a equality check between {@code x} and 273 * {@code x'} that lets the algorithm continue to consume lookahead longer 274 * than necessary. The reason I like the equality is of course the 275 * simplicity but also because that is the test you need to detect the 276 * alternatives that are actually in conflict.</p> 277 * 278 * <p><strong>CONTINUE/STOP RULE</strong></p> 279 * 280 * <p>Continue if union of resolved alternative sets from non-conflicting and 281 * conflicting alternative subsets has more than one alternative. We are 282 * uncertain about which alternative to predict.</p> 283 * 284 * <p>The complete set of alternatives, {@code [i for (_,i,_)]}, tells us which 285 * alternatives are still in the running for the amount of input we've 286 * consumed at this point. The conflicting sets let us to strip away 287 * configurations that won't lead to more states because we resolve 288 * conflicts to the configuration with a minimum alternate for the 289 * conflicting set.</p> 290 * 291 * <p><strong>CASES</strong></p> 292 * 293 * <ul> 294 * 295 * <li>no conflicts and more than 1 alternative in set => continue</li> 296 * 297 * <li> {@code (s, 1, x)}, {@code (s, 2, x)}, {@code (s, 3, z)}, 298 * {@code (s', 1, y)}, {@code (s', 2, y)} yields non-conflicting set 299 * {@code {3}} U conflicting sets {@code min({1,2})} U {@code min({1,2})} = 300 * {@code {1,3}} => continue 301 * </li> 302 * 303 * <li>{@code (s, 1, x)}, {@code (s, 2, x)}, {@code (s', 1, y)}, 304 * {@code (s', 2, y)}, {@code (s'', 1, z)} yields non-conflicting set 305 * {@code {1}} U conflicting sets {@code min({1,2})} U {@code min({1,2})} = 306 * {@code {1}} => stop and predict 1</li> 307 * 308 * <li>{@code (s, 1, x)}, {@code (s, 2, x)}, {@code (s', 1, y)}, 309 * {@code (s', 2, y)} yields conflicting, reduced sets {@code {1}} U 310 * {@code {1}} = {@code {1}} => stop and predict 1, can announce 311 * ambiguity {@code {1,2}}</li> 312 * 313 * <li>{@code (s, 1, x)}, {@code (s, 2, x)}, {@code (s', 2, y)}, 314 * {@code (s', 3, y)} yields conflicting, reduced sets {@code {1}} U 315 * {@code {2}} = {@code {1,2}} => continue</li> 316 * 317 * <li>{@code (s, 1, x)}, {@code (s, 2, x)}, {@code (s', 3, y)}, 318 * {@code (s', 4, y)} yields conflicting, reduced sets {@code {1}} U 319 * {@code {3}} = {@code {1,3}} => continue</li> 320 * 321 * </ul> 322 * 323 * <p><strong>EXACT AMBIGUITY DETECTION</strong></p> 324 * 325 * <p>If all states report the same conflicting set of alternatives, then we 326 * know we have the exact ambiguity set.</p> 327 * 328 * <p><code>|A_<em>i</em>|>1</code> and 329 * <code>A_<em>i</em> = A_<em>j</em></code> for all <em>i</em>, <em>j</em>.</p> 330 * 331 * <p>In other words, we continue examining lookahead until all {@code A_i} 332 * have more than one alternative and all {@code A_i} are the same. If 333 * {@code A={{1,2}, {1,3}}}, then regular LL prediction would terminate 334 * because the resolved set is {@code {1}}. To determine what the real 335 * ambiguity is, we have to know whether the ambiguity is between one and 336 * two or one and three so we keep going. We can only stop prediction when 337 * we need exact ambiguity detection when the sets look like 338 * {@code A={{1,2}}} or {@code {{1,2},{1,2}}}, etc...</p> 339 */ 340 public static int resolvesToJustOneViableAlt(BitSet[] altsets) 341 { 342 return getSingleViableAlt(altsets); 343 } 344 345 /** 346 * Determines if every alternative subset in {@code altsets} contains more 347 * than one alternative. 348 * 349 * @param altsets a collection of alternative subsets 350 * @return {@code true} if every {@link BitSet} in {@code altsets} has 351 * {@link BitSet#cardinality cardinality} > 1, otherwise {@code false} 352 */ 353 public static bool allSubsetsConflict(BitSet[] altsets) 354 { 355 return !hasNonConflictingAltSet(altsets); 356 } 357 358 /** 359 * Determines if any single alternative subset in {@code altsets} contains 360 * exactly one alternative. 361 * 362 * @param altsets a collection of alternative subsets 363 * @return {@code true} if {@code altsets} contains a {@link BitSet} with 364 * {@link BitSet#cardinality cardinality} 1, otherwise {@code false} 365 */ 366 public static bool hasNonConflictingAltSet(BitSet[] altsets) 367 { 368 foreach (BitSet alts; altsets) { 369 if (alts.cardinality == 1) { 370 return true; 371 } 372 } 373 return false; 374 } 375 376 /** 377 * Determines if any single alternative subset in {@code altsets} contains 378 * more than one alternative. 379 * 380 * @param altsets a collection of alternative subsets 381 * @return {@code true} if {@code altsets} contains a {@link BitSet} with 382 * {@link BitSet#cardinality cardinality} > 1, otherwise {@code false} 383 */ 384 public static bool hasConflictingAltSet(BitSet[] altsets) 385 { 386 foreach (BitSet alts; altsets) { 387 if (alts.cardinality >1) { 388 return true; 389 } 390 } 391 return false; 392 } 393 394 /** 395 * Determines if every alternative subset in {@code altsets} is equivalent. 396 * 397 * @param altsets a collection of alternative subsets 398 * @return {@code true} if every member of {@code altsets} is equal to the 399 * others, otherwise {@code false} 400 */ 401 public static bool allSubsetsEqual(BitSet[] altsets) 402 { 403 BitSet first; 404 foreach (i, el; altsets) { 405 if (i == 0) 406 first = el; 407 else 408 if (!el.opEquals(first)) return false; 409 } 410 return true; 411 } 412 413 /** 414 * Returns the unique alternative predicted by all alternative subsets in 415 * {@code altsets}. If no such alternative exists, this method returns 416 * {@link ATN#INVALID_ALT_NUMBER}. 417 * 418 * @param altsets a collection of alternative subsets 419 */ 420 public static int getUniqueAlt(BitSet[] altsets) 421 { 422 BitSet all = getAlts(altsets); 423 if (all.cardinality == 1) 424 return all.nextSetBit(0); 425 return ATN.INVALID_ALT_NUMBER; 426 } 427 428 /** 429 * Gets the complete set of represented alternatives for a collection of 430 * alternative subsets. This method returns the union of each {@link BitSet} 431 * in {@code altsets}. 432 * 433 * @param altsets a collection of alternative subsets 434 * @return the set of represented alternatives in {@code altsets} 435 */ 436 public static BitSet getAlts(BitSet[] altsets) 437 { 438 BitSet all; 439 foreach (BitSet alts; altsets) { 440 all = all.or(alts); 441 } 442 return all; 443 } 444 445 public static BitSet getAlts(ATNConfigSet configs) 446 { 447 BitSet *alts; 448 alts = new BitSet; 449 foreach (ATNConfig config; configs.configs) { 450 alts.set(config.alt, true); 451 } 452 return *alts; 453 } 454 455 /** 456 * This function gets the conflicting alt subsets from a configuration set. 457 * For each configuration {@code c} in {@code configs}: 458 * 459 * <pre> 460 * map[c] U= c.{@link ATNConfig#alt alt} # map hash/equals uses stack and context, not 461 * alt and not pred 462 * </pre> 463 */ 464 public static BitSet[] getConflictingAltSubsets(ATNConfigSet configs) 465 { 466 AltAndContextMap configToAlts; 467 BitSet *alts; 468 469 foreach (ATNConfig c; configs.configs) { 470 auto c_copy = new ATNConfig(c); 471 if (!configToAlts.hasKey(c_copy)) 472 { 473 alts = new BitSet(); 474 alts.set(0, false); // initialise alts 475 configToAlts.put(c_copy, *alts); 476 } 477 else { 478 *alts = configToAlts.get(c_copy); 479 } 480 alts.set(c_copy.alt, true); 481 } 482 return configToAlts.altAndContextMap.values; 483 } 484 485 /** 486 * Get a map from state to alt subset from a configuration set. For each 487 * configuration {@code c} in {@code configs}: 488 * 489 * <pre> 490 * map[c.{@link ATNConfig#state state}] U= c.{@link ATNConfig#alt alt} 491 * </pre> 492 */ 493 public static BitSet[ATNState] getStateToAltMap(ATNConfigSet configs) 494 { 495 BitSet[ATNState] m; 496 foreach (ATNConfig c; configs.configs) { 497 BitSet alts; 498 if (!(c.state in m)){ 499 alts.clear; 500 m[c.state] = alts; 501 } 502 alts.set(c.alt, true); 503 } 504 return m; 505 } 506 507 public static bool hasStateAssociatedWithOneAlt(ATNConfigSet configs) 508 { 509 BitSet[ATNState] x = getStateToAltMap(configs); 510 foreach (alts; x.values) { 511 if (alts.cardinality == 1) 512 return true; 513 } 514 return false; 515 } 516 517 public static int getSingleViableAlt(BitSet[] altsets) 518 { 519 BitSet viableAlts; 520 foreach (BitSet alts; altsets) { 521 int minAlt = alts.nextSetBit(0); 522 viableAlts.set(minAlt, true); 523 if (viableAlts.cardinality > 1) { // more than 1 viable alt 524 return ATN.INVALID_ALT_NUMBER; 525 } 526 } 527 return viableAlts.nextSetBit(0); 528 } 529 530 }