1 /*
2  * Copyright (c) 2012-2019 The ANTLR Project. All rights reserved.
3  * Use of this file is governed by the BSD 3-clause license that
4  * can be found in the LICENSE.txt file in the project root.
5  */
6 
7 module antlr.v4.runtime.DefaultErrorStrategy;
8 
9 import antlr.v4.runtime.ANTLRErrorStrategy;
10 import antlr.v4.runtime.CharStream;
11 import antlr.v4.runtime.FailedPredicateException;
12 import antlr.v4.runtime.InputMismatchException;
13 import antlr.v4.runtime.NoViableAltException;
14 import antlr.v4.runtime.Parser;
15 import antlr.v4.runtime.ParserRuleContext;
16 import antlr.v4.runtime.RecognitionException;
17 import antlr.v4.runtime.RuleContext;
18 import antlr.v4.runtime.Token;
19 import antlr.v4.runtime.TokenConstantDefinition;
20 import antlr.v4.runtime.TokenSource;
21 import antlr.v4.runtime.TokenStream;
22 import antlr.v4.runtime.atn.ATN;
23 import antlr.v4.runtime.atn.ATNState;
24 import antlr.v4.runtime.atn.RuleTransition;
25 import antlr.v4.runtime.atn.StateNames;
26 import antlr.v4.runtime.misc.IntervalSet;
27 import std.array;
28 import std.conv;
29 import std.format;
30 import std.stdio;
31 import std.typecons;
32 import std.variant;
33 
34 alias TokenFactorySourcePair = Tuple!(TokenSource, "a", CharStream, "b");
35 
36 /**
37  * This is the default implementation of {@link ANTLRErrorStrategy} used for
38  * error reporting and recovery in ANTLR parsers.
39  */
40 class DefaultErrorStrategy : ANTLRErrorStrategy
41 {
42 
43     /**
44      * Indicates whether the error strategy is currently "recovering from an
45      * error". This is used to suppress reporting multiple error messages while
46      * attempting to recover from a detected syntax error.
47      *
48      *  @see #inErrorRecoveryMode
49      */
50     protected bool errorRecoveryMode;
51 
52     /**
53      * The index into the input stream where the last error occurred.
54      * This is used to prevent infinite loops where an error is found
55      * but no token is consumed during recovery...another error is found,
56      * ad nauseum.  This is a failsafe mechanism to guarantee that at least
57      * one token/tree node is consumed for two errors.
58      */
59     protected int lastErrorIndex = -1;
60 
61     public IntervalSet lastErrorStates;
62 
63     /**
64      * This field is used to propagate information about the lookahead following
65      * the previous match. Since prediction prefers completing the current rule
66      * to error recovery efforts, error reporting may occur later than the
67      * original point where it was discoverable. The original context is used to
68      * compute the true expected sets as though the reporting occurred as early
69      * as possible.
70      */
71     protected ParserRuleContext nextTokensContext;
72 
73     /**
74      * @see #nextTokensContext
75      */
76     protected int nextTokensState;
77 
78     /**
79      * <p>The default implementation simply calls {@link #endErrorCondition} to
80      * ensure that the handler is not in error recovery mode.</p>
81      */
82     public void reset(Parser recognizer)
83     {
84         endErrorCondition(recognizer);
85     }
86 
87     /**
88      * This method is called to enter error recovery mode when a recognition
89      * exception is reported.
90      *
91      * @param recognizer the parser instance
92      */
93     protected void beginErrorCondition(Parser recognizer)
94     {
95         errorRecoveryMode = true;
96     }
97 
98     public bool inErrorRecoveryMode(Parser recognizer)
99     {
100         return errorRecoveryMode;
101     }
102 
103     /**
104      * This method is called to leave error recovery mode after recovering from
105      * a recognition exception.
106      *
107      * @param recognizer
108      */
109     protected void endErrorCondition(Parser recognizer)
110     {
111 	errorRecoveryMode = false;
112         lastErrorStates = null;
113         lastErrorIndex = -1;
114     }
115 
116     /**
117      * {@inheritDoc}
118      *
119      * <p>The default implementation simply calls {@link #endErrorCondition}.</p>
120      */
121     public void reportMatch(Parser recognizer)
122     {
123 	endErrorCondition(recognizer);
124     }
125 
126     /**
127      * {@inheritDoc}
128      *
129      * <p>The default implementation returns immediately if the handler is already
130      * in error recovery mode. Otherwise, it calls {@link #beginErrorCondition}
131      * and dispatches the reporting task based on the runtime type of {@code e}
132      * according to the following table.</p>
133      *
134      * <ul>
135      * <li>{@link NoViableAltException}: Dispatches the call to
136      * {@link #reportNoViableAlternative}</li>
137      * <li>{@link InputMismatchException}: Dispatches the call to
138      * {@link #reportInputMismatch}</li>
139      * <li>{@link FailedPredicateException}: Dispatches the call to
140      * {@link #reportFailedPredicate}</li>
141      * <li>All other types: calls {@link Parser#notifyErrorListeners} to report
142      * the exception</li>
143      * </ul>
144      */
145     public void reportError(Parser recognizer, RecognitionException e)
146     {
147 	// if we've already reported an error and have not matched a token
148         // yet successfully, don't report any errors.
149         if (inErrorRecoveryMode(recognizer)) {
150             debug(DefaultErrorStrategy)
151             {
152                 writefln("DefaultErrorStrategy:[SPURIOUS]");
153             }
154             return; // don't report spurious errors
155         }
156         beginErrorCondition(recognizer);
157         if (cast(NoViableAltException)e) {
158             reportNoViableAlternative(recognizer, cast(NoViableAltException)e);
159         }
160         else if (cast(InputMismatchException)e) {
161             reportInputMismatch(recognizer, cast(InputMismatchException)e);
162         }
163         else if (cast(FailedPredicateException)e) {
164             reportFailedPredicate(recognizer, cast(FailedPredicateException)e);
165         }
166         else {
167             stderr.writefln("unknown recognition error type: %s", e.stringof);
168             recognizer.notifyErrorListeners(e.getOffendingToken(), e.msg, e);
169         }
170     }
171 
172     /**
173      * {@inheritDoc}
174      *
175      * <p>The default implementation resynchronizes the parser by consuming tokens
176      * until we find one in the resynchronization set--loosely the set of tokens
177      * that can follow the current rule.</p>
178      */
179     public void recover(Parser recognizer, RecognitionException e)
180     {
181         debug(DefaultErrorStrategy)
182         {
183             writefln("recover in %s index=%s, lastErrorIndex=%s, states=%s",
184                      recognizer.getRuleInvocationStack,
185                      recognizer.getInputStream().index(),
186                      lastErrorIndex,
187                      lastErrorStates);
188         }
189         if (lastErrorIndex == recognizer.getInputStream.index() &&
190             lastErrorStates !is null &&
191             lastErrorStates.contains(recognizer.getState))
192             {
193                 // uh oh, another error at same token index and previously-visited
194                 // state in ATN; must be a case where LT(1) is in the recovery
195                 // token set so nothing got consumed. Consume a single token
196                 // at least to prevent an infinite loop; this is a failsafe.
197                 debug(DefaultErrorStrategy)
198                 {
199                     stderr.writefln("seen error condition before index= %s, states=%s",
200                                     lastErrorIndex, lastErrorStates);
201                     stderr.writefln("FAILSAFE consumes %s",
202                                     recognizer.getTokenNames()[recognizer.getInputStream().LA(1)]);
203                 }
204                 recognizer.consume;
205             }
206         lastErrorIndex = recognizer.getInputStream.index;
207         if (!lastErrorStates)
208             lastErrorStates = new IntervalSet;
209         lastErrorStates.add(recognizer.getState);
210         IntervalSet followSet = getErrorRecoverySet(recognizer);
211         consumeUntil(recognizer, followSet);
212     }
213 
214     /**
215      * The default implementation of {@link ANTLRErrorStrategy#sync} makes sure
216      * that the current lookahead symbol is consistent with what were expecting
217      * at this point in the ATN. You can call this anytime but ANTLR only
218      * generates code to check before subrules/loops and each iteration.
219      *
220      * <p>Implements Jim Idle's magic sync mechanism in closures and optional
221      * subrules. E.g.,</p>
222      *
223      * <pre>
224      * a : sync ( stuff sync )* ;
225      * sync : {consume to what can follow sync} ;
226      * </pre>
227      *
228      * At the start of a sub rule upon error, {@link #sync} performs single
229      * token deletion, if possible. If it can't do that, it bails on the current
230      * rule and uses the default error recovery, which consumes until the
231      * resynchronization set of the current rule.
232      *
233      * <p>If the sub rule is optional ({@code (...)?}, {@code (...)*}, or block
234      * with an empty alternative), then the expected set includes what follows
235      * the subrule.</p>
236      *
237      * <p>During loop iteration, it consumes until it sees a token that can start a
238      * sub rule or what follows loop. Yes, that is pretty aggressive. We opt to
239      * stay in the loop as long as possible.</p>
240      *
241      * <p><strong>ORIGINS</strong></p>
242      *
243      * <p>Previous versions of ANTLR did a poor job of their recovery within loops.
244      * A single mismatch token or missing token would force the parser to bail
245      * out of the entire rules surrounding the loop. So, for rule</p>
246      *
247      * <pre>
248      * classDef : 'class' ID '{' member* '}'
249      * </pre>
250      *
251      * input with an extra token between members would force the parser to
252      * consume until it found the next class definition rather than the next
253      * member definition of the current class.
254      *
255      * <p>This functionality cost a little bit of effort because the parser has to
256      * compare token set at the start of the loop and at each iteration. If for
257      * some reason speed is suffering for you, you can turn off this
258      * functionality by simply overriding this method as a blank { }.</p>
259      */
260     public void sync(Parser recognizer)
261     {
262 	ATNState s = recognizer.getInterpreter.atn.states[recognizer.getState];
263         debug(ErrorHandling)
264             {
265                 writefln("sync @ %s=%s", s.stateNumber, s.classinfo);
266             }
267         // If already recovering, don't try to sync
268         if (inErrorRecoveryMode(recognizer)) {
269             return;
270         }
271         TokenStream tokens = recognizer.getInputStream;
272         int la = tokens.LA(1);
273 
274         // try cheaper subset first; might get lucky. seems to shave a wee bit off
275         IntervalSet nextTokens = recognizer.getATN.nextTokens(s);
276         if (nextTokens.contains(la)) {
277             // We are sure the token matches
278             nextTokensContext = null;
279             nextTokensState = ATNState.INVALID_STATE_NUMBER;
280             return;
281         }
282 
283 	if (nextTokens.contains(TokenConstantDefinition.EPSILON)) {
284             if (nextTokensContext is null) {
285                 // It's possible the next token won't match; information tracked
286                 // by sync is restricted for performance.
287                 nextTokensContext = recognizer.ctx;
288                 nextTokensState = recognizer.getState;
289             }
290             return;
291         }
292 
293         switch (s.getStateType) {
294         case StateNames.BLOCK_START:
295         case StateNames.STAR_BLOCK_START:
296         case StateNames.PLUS_BLOCK_START:
297         case StateNames.STAR_LOOP_ENTRY:
298             // report error and recover if possible
299             if (singleTokenDeletion(recognizer) !is null) {
300                 return;
301             }
302             throw new InputMismatchException(recognizer);
303 
304         case StateNames.PLUS_LOOP_BACK:
305         case StateNames.STAR_LOOP_BACK:
306             debug(ErrorHandling)
307             {
308                 stderr.writefln("at loop back: %s", s);
309             }
310             reportUnwantedToken(recognizer);
311             IntervalSet expecting = recognizer.getExpectedTokens;
312             IntervalSet whatFollowsLoopIterationOrRule =
313                 expecting.or(getErrorRecoverySet(recognizer));
314             consumeUntil(recognizer, whatFollowsLoopIterationOrRule);
315             break;
316 
317         default:
318             // do nothing if we can't identify the exact kind of ATN state
319             break;
320         }
321     }
322 
323     /**
324      * This is called by {@link #reportError} when the exception is a
325      * {@link NoViableAltException}.
326      *
327      * @see #reportError
328      *
329      * @param recognizer the parser instance
330      * @param e the recognition exception
331      */
332     protected void reportNoViableAlternative(Parser recognizer, NoViableAltException e)
333     {
334 	TokenStream tokens = recognizer.getInputStream();
335         string input;
336         if (tokens !is null) {
337             if (e.getStartToken.getType == TokenConstantDefinition.EOF)
338                 input = "<EOF>";
339             else
340                 input = to!string(tokens.getText(e.getStartToken, e.getOffendingToken));
341         }
342         else {
343             input = "<unknown input>";
344         }
345         string msg = format("no viable alternative at input %s", escapeWSAndQuote(input));
346         recognizer.notifyErrorListeners(e.getOffendingToken, msg, e);
347     }
348 
349     /**
350      * This is called by {@link #reportError} when the exception is an
351      * {@link InputMismatchException}.
352      *
353      * @see #reportError
354      *
355      * @param recognizer the parser instance
356      * @param e the recognition exception
357      */
358     protected void reportInputMismatch(Parser recognizer, InputMismatchException e)
359     {
360         string msg = format("mismatched input %1$s expecting %2$s",
361                             getTokenErrorDisplay(e.getOffendingToken),
362                             e.getExpectedTokens.toString(recognizer.getVocabulary));
363         recognizer.notifyErrorListeners(e.getOffendingToken, msg, e);
364     }
365 
366     /**
367      * This is called by {@link #reportError} when the exception is a
368      * {@link FailedPredicateException}.
369      *
370      * @see #reportError
371      *
372      * @param recognizer the parser instance
373      * @param e the recognition exception
374      */
375     protected void reportFailedPredicate(Parser recognizer, FailedPredicateException e)
376     {
377 	string ruleName = recognizer.getRuleNames[recognizer.ctx.getRuleIndex()];
378         string msg = "rule " ~ ruleName ~ " " ~ e.msg;
379         recognizer.notifyErrorListeners(e.getOffendingToken, msg, e);
380     }
381 
382     /**
383      * This method is called to report a syntax error which requires the removal
384      * of a token from the input stream. At the time this method is called, the
385      * erroneous symbol is current {@code LT(1)} symbol and has not yet been
386      * removed from the input stream. When this method returns,
387      * {@code recognizer} is in error recovery mode.
388      *
389      * <p>This method is called when {@link #singleTokenDeletion} identifies
390      * single-token deletion as a viable recovery strategy for a mismatched
391      * input error.</p>
392      *
393      * <p>The default implementation simply returns if the handler is already in
394      * error recovery mode. Otherwise, it calls {@link #beginErrorCondition} to
395      * enter error recovery mode, followed by calling
396      * {@link Parser#notifyErrorListeners}.</p>
397      *
398      * @param recognizer the parser instance
399      */
400     protected void reportUnwantedToken(Parser recognizer)
401     {
402 	if (inErrorRecoveryMode(recognizer)) {
403             return;
404         }
405 
406         beginErrorCondition(recognizer);
407 
408         Token t = recognizer.getCurrentToken();
409         string tokenName = getTokenErrorDisplay(t);
410         IntervalSet expecting = getExpectedTokens(recognizer);
411         string msg = "extraneous input " ~ tokenName ~ " expecting " ~
412             expecting.toString(recognizer.getVocabulary());
413         recognizer.notifyErrorListeners(t, msg, null);
414     }
415 
416     /**
417      * This method is called to report a syntax error which requires the
418      * insertion of a missing token into the input stream. At the time this
419      * method is called, the missing token has not yet been inserted. When this
420      * method returns, {@code recognizer} is in error recovery mode.
421      *
422      * <p>This method is called when {@link #singleTokenInsertion} identifies
423      * single-token insertion as a viable recovery strategy for a mismatched
424      * input error.</p>
425      *
426      * <p>The default implementation simply returns if the handler is already in
427      * error recovery mode. Otherwise, it calls {@link #beginErrorCondition} to
428      * enter error recovery mode, followed by calling
429      * {@link Parser#notifyErrorListeners}.</p>
430      *
431      * @param recognizer the parser instance
432      */
433     protected void reportMissingToken(Parser recognizer)
434     {
435 	if (inErrorRecoveryMode(recognizer)) {
436             return;
437         }
438 
439         beginErrorCondition(recognizer);
440 
441         Token t = recognizer.getCurrentToken();
442         IntervalSet expecting = getExpectedTokens(recognizer);
443         string msg = format("missing %1$s at %2$s", expecting.toString(recognizer.getVocabulary),
444                             getTokenErrorDisplay(t));
445 
446         recognizer.notifyErrorListeners(t, msg, null);
447     }
448 
449     /**
450      * {@inheritDoc}
451      *
452      * <p>The default implementation attempts to recover from the mismatched input
453      * by using single token insertion and deletion as described below. If the
454      * recovery attempt fails, this method throws an
455      * {@link InputMismatchException}.</p>
456      *
457      * <p><strong>EXTRA TOKEN</strong> (single token deletion)</p>
458      *
459      * <p>{@code LA(1)} is not what we are looking for. If {@code LA(2)} has the
460      * right token, however, then assume {@code LA(1)} is some extra spurious
461      * token and delete it. Then consume and return the next token (which was
462      * the {@code LA(2)} token) as the successful result of the match operation.</p>
463      *
464      * <p>This recovery strategy is implemented by {@link #singleTokenDeletion}.</p>
465      *
466      * <p><strong>MISSING TOKEN</strong> (single token insertion)</p>
467      *
468      * <p>If current token (at {@code LA(1)}) is consistent with what could come
469      * after the expected {@code LA(1)} token, then assume the token is missing
470      * and use the parser's {@link TokenFactory} to create it on the fly. The
471      * "insertion" is performed by returning the created token as the successful
472      * result of the match operation.</p>
473      *
474      * <p>This recovery strategy is implemented by {@link #singleTokenInsertion}.</p>
475      *
476      * <p><strong>EXAMPLE</strong></p>
477      *
478      * <p>For example, Input {@code i=(3;} is clearly missing the {@code '$(RPAREN)'}. When
479      * the parser returns from the nested call to {@code expr}, it will have
480      * call chain:</p>
481      *
482      * <pre>
483      * stat &rarr; expr &rarr; atom
484      * </pre>
485      *
486      * and it will be trying to match the {@code '$(RPAREN)'} at this point in the
487      * derivation:
488      *
489      * <pre>
490      * =&gt; ID '=' '(' INT ')' ('+' atom)* ';'
491      *                    ^
492      * </pre>
493      *
494      * The attempt to match {@code '$(RPAREN)'} will fail when it sees {@code ';'} and
495      * call {@link #recoverInline}. To recover, it sees that {@code LA(1)==';'}
496      * is in the set of tokens that can follow the {@code '$(RPAREN)'} token reference
497      * in rule {@code atom}. It can assume that you forgot the {@code ')'}.
498      */
499     public Token recoverInline(Parser recognizer)
500     {
501 	// SINGLE TOKEN DELETION
502         Token matchedSymbol = singleTokenDeletion(recognizer);
503         if (matchedSymbol !is null) {
504             // we have deleted the extra token.
505             // now, move past ttype token as if all were ok
506             recognizer.consume();
507             return matchedSymbol;
508         }
509 
510         // SINGLE TOKEN INSERTION
511         if (singleTokenInsertion(recognizer)) {
512             return getMissingSymbol(recognizer);
513         }
514 
515         // even that didn't work; must throw the exception
516         InputMismatchException e;
517         if (nextTokensContext is null) {
518             e = new InputMismatchException(recognizer);
519         } else {
520             e = new InputMismatchException(recognizer, nextTokensState, nextTokensContext);
521         }
522         throw e;
523     }
524 
525     /**
526      * This method implements the single-token insertion inline error recovery
527      * strategy. It is called by {@link #recoverInline} if the single-token
528      * deletion strategy fails to recover from the mismatched input. If this
529      * method returns {@code true}, {@code recognizer} will be in error recovery
530      * mode.
531      *
532      * <p>This method determines whether or not single-token insertion is viable by
533      * checking if the {@code LA(1)} input symbol could be successfully matched
534      * if it were instead the {@code LA(2)} symbol. If this method returns
535      * {@code true}, the caller is responsible for creating and inserting a
536      * token with the correct type to produce this behavior.</p>
537      *
538      * @param recognizer the parser instance
539      * @return {@code true} if single-token insertion is a viable recovery
540      * strategy for the current mismatched input, otherwise {@code false}
541      */
542     protected bool singleTokenInsertion(Parser recognizer)
543     {
544 	int currentSymbolType = recognizer.getInputStream().LA(1);
545         // if current token is consistent with what could come after current
546         // ATN state, then we know we're missing a token; error recovery
547         // is free to conjure up and insert the missing token
548         ATNState currentState = recognizer.getInterpreter().atn.states[recognizer.getState];
549         ATNState next = currentState.transition(0).target;
550         ATN atn = recognizer.getInterpreter().atn;
551         IntervalSet expectingAtLL2 = atn.nextTokens(next, recognizer.ctx);
552         debug(ErrorHandling)
553             {
554                 //writefln("LT(2) set=%s", expectingAtLL2.toString(recognizer.getTokenNames));
555             }
556         if ( expectingAtLL2.contains(currentSymbolType) ) {
557             reportMissingToken(recognizer);
558             return true;
559         }
560         return false;
561     }
562 
563     /**
564      * This method implements the single-token deletion inline error recovery
565      * strategy. It is called by {@link #recoverInline} to attempt to recover
566      * from mismatched input. If this method returns null, the parser and error
567      * handler state will not have changed. If this method returns non-null,
568      * {@code recognizer} will <em>not</em> be in error recovery mode since the
569      * returned token was a successful match.
570      *
571      * <p>If the single-token deletion is successful, this method calls
572      * {@link #reportUnwantedToken} to report the error, followed by
573      * {@link Parser#consume} to actually "delete" the extraneous token. Then,
574      * before returning {@link #reportMatch} is called to signal a successful
575      * match.</p>
576      *
577      * @param recognizer the parser instance
578      * @return the successfully matched {@link Token} instance if single-token
579      * deletion successfully recovers from the mismatched input, otherwise
580      * {@code null}
581      */
582     protected Token singleTokenDeletion(Parser recognizer)
583     {
584 	int nextTokenType = recognizer.getInputStream().LA(2);
585         IntervalSet expecting = getExpectedTokens(recognizer);
586         if ( expecting.contains(nextTokenType) ) {
587             reportUnwantedToken(recognizer);
588             /*
589               System.err.println("recoverFromMismatchedToken deleting "+
590               ((TokenStream)recognizer.getInputStream()).LT(1)+
591               " since "+((TokenStream)recognizer.getInputStream()).LT(2)+
592               " is what we want");
593             */
594             recognizer.consume(); // simply delete extra token
595             // we want to return the token we're actually matching
596             Token matchedSymbol = recognizer.getCurrentToken();
597             reportMatch(recognizer);  // we know current token is correct
598             return matchedSymbol;
599         }
600         return null;
601     }
602 
603     /**
604      * Conjure up a missing token during error recovery.
605      *
606      *  The recognizer attempts to recover from single missing
607      *  symbols. But, actions might refer to that missing symbol.
608      *  For example, x=ID {f($x);}. The action clearly assumes
609      *  that there has been an identifier matched previously and that
610      *  $x points at that token. If that token is missing, but
611      *  the next token in the stream is what we want we assume that
612      *  this token is missing and we keep going. Because we
613      *  have to return some token to replace the missing token,
614      *  we have to conjure one up. This method gives the user control
615      *  over the tokens returned for missing tokens. Mostly,
616      *  you will want to create something special for identifier
617      *  tokens. For literals such as '{' and ',', the default
618      *  action in the parser or tree parser works. It simply creates
619      *  a CommonToken of the appropriate type. The text will be the token.
620      *  If you change what tokens must be created by the lexer,
621      *  override this method to create the appropriate tokens.
622      */
623     protected Token getMissingSymbol(Parser recognizer)
624     {
625 	Token currentSymbol = recognizer.getCurrentToken();
626         IntervalSet expecting = getExpectedTokens(recognizer);
627         int expectedTokenType = TokenConstantDefinition.INVALID_TYPE;
628         if (!expecting.isNil) {
629             expectedTokenType = expecting.getMinElement(); // get any element
630         }
631         string tokenText;
632         if (expectedTokenType == TokenConstantDefinition.EOF)
633             tokenText = "<missing EOF>";
634         else
635             tokenText = format("<missing %s>", recognizer.getVocabulary.getDisplayName(expectedTokenType));
636         Token current = currentSymbol;
637         Token lookback = recognizer.getInputStream().LT(-1);
638         if ( current.getType() == TokenConstantDefinition.EOF && lookback !is null) {
639             current = lookback;
640         }
641         TokenFactorySourcePair tsp = tuple(current.getTokenSource(), current.getTokenSource().getInputStream());
642         Variant v = tokenText;
643         return
644             recognizer.tokenFactory().create(tsp, expectedTokenType, v,
645                                              TokenConstantDefinition.DEFAULT_CHANNEL,
646                                              -1, -1,
647                                              current.getLine(), current.getCharPositionInLine());
648 
649     }
650 
651     protected IntervalSet getExpectedTokens(Parser recognizer)
652     {
653 	return recognizer.getExpectedTokens;
654     }
655 
656     /**
657      * How should a token be displayed in an error message? The default
658      * is to display just the text, but during development you might
659      * want to have a lot of information spit out.  Override in that case
660      * to use t.toString() (which, for CommonToken, dumps everything about
661      * the token). This is better than forcing you to override a method in
662      * your token objects because you don't have to go modify your lexer
663      * so that it creates a new Java type.
664      */
665     protected string getTokenErrorDisplay(Token t)
666     {
667 	if (t is null) return "<no token>";
668         string s = getSymbolText(t);
669         if (s is null) {
670             if (getSymbolType(t) == TokenConstantDefinition.EOF) {
671                 s = "<EOF>";
672             }
673             else {
674                 s = format("<%s>", getSymbolType(t));
675             }
676         }
677         return escapeWSAndQuote(s);
678     }
679 
680     protected string getSymbolText(Token symbol)
681     {
682         return to!string(symbol.getText);
683     }
684 
685     protected int getSymbolType(Token symbol)
686     {
687 	return symbol.getType();
688     }
689 
690     protected string escapeWSAndQuote(string s)
691     {
692         //		if ( s==null ) return s;
693         s = s.replace("\n","\\n");
694         s = s.replace("\r","\\r");
695         s = s.replace("\t","\\t");
696         return "'" ~ s ~ "'";
697     }
698 
699     /**
700      * Compute the error recovery set for the current rule.  During
701      *  rule invocation, the parser pushes the set of tokens that can
702      *  follow that rule reference on the stack; this amounts to
703      *  computing FIRST of what follows the rule reference in the
704      *  enclosing rule. See LinearApproximator.FIRST().
705      *  This local follow set only includes tokens
706      *  from within the rule; i.e., the FIRST computation done by
707      *  ANTLR stops at the end of a rule.
708      *
709      *  EXAMPLE
710      *
711      *  When you find a "no viable alt exception", the input is not
712      *  consistent with any of the alternatives for rule r.  The best
713      *  thing to do is to consume tokens until you see something that
714      *  can legally follow a call to r *or* any rule that called r.
715      *  You don't want the exact set of viable next tokens because the
716      *  input might just be missing a token--you might consume the
717      *  rest of the input looking for one of the missing tokens.
718      *
719      *  Consider grammar:
720      *
721      *  a : '[' b ']'
722      *    | '(' b ')'
723      *    ;
724      *  b : c '^' INT ;
725      *  c : ID
726      *    | INT
727      *    ;
728      *
729      *  At each rule invocation, the set of tokens that could follow
730      *  that rule is pushed on a stack.  Here are the various
731      *  context-sensitive follow sets:
732      *
733      *  FOLLOW(b1_in_a) = FIRST(']') = ']'
734      *  FOLLOW(b2_in_a) = FIRST('$(RPAREN)') = '$(RPAREN)'
735      *  FOLLOW(c_in_b) = FIRST('^') = '^'
736      *
737      *  Upon erroneous input "[]", the call chain is
738      *
739      *  a -> b -> c
740      *
741      *  and, hence, the follow context stack is:
742      *
743      *  depth     follow set       start of rule execution
744      *    0         <EOF>                    a (from main())
745      *    1          ']'                     b
746      *    2          '^'                     c
747      *
748      *  Notice that '$(RPAREN)' is not included, because b would have to have
749      *  been called from a different context in rule a for '$(RPAREN)' to be
750      *  included.
751      *
752      *  For error recovery, we cannot consider FOLLOW(c)
753      *  (context-sensitive or otherwise).  We need the combined set of
754      *  all context-sensitive FOLLOW sets--the set of all tokens that
755      *  could follow any reference in the call chain.  We need to
756      *  resync to one of those tokens.  Note that FOLLOW(c)='^' and if
757      *  we resync'd to that token, we'd consume until EOF.  We need to
758      *  sync to context-sensitive FOLLOWs for a, b, and c: {']','^'}.
759      *  In this case, for input "[]", LA(1) is ']' and in the set, so we would
760      *  not consume anything. After printing an error, rule c would
761      *  return normally.  Rule b would not find the required '^' though.
762      *  At this point, it gets a mismatched token error and throws an
763      *  exception (since LA(1) is not in the viable following token
764      *  set).  The rule exception handler tries to recover, but finds
765      *  the same recovery set and doesn't consume anything.  Rule b
766      *  exits normally returning to rule a.  Now it finds the ']' (and
767      *  with the successful match exits errorRecovery mode).
768      *
769      *  So, you can see that the parser walks up the call chain looking
770      *  for the token that was a member of the recovery set.
771      *
772      *  Errors are not generated in errorRecovery mode.
773      *
774      *  ANTLR's error recovery mechanism is based upon original ideas:
775      *
776      *  "Algorithms + Data Structures = Programs" by Niklaus Wirth
777      *
778      *  and
779      *
780      *  "A note on error recovery in recursive descent parsers":
781      *  http://portal.acm.org/citation.cfm?id=947902.947905
782      *
783      *  Later, Josef Grosch had some good ideas:
784      *
785      *  "Efficient and Comfortable Error Recovery in Recursive Descent
786      *  Parsers":
787      *  ftp://www.cocolab.com/products/cocktail/doca4.ps/ell.ps.zip
788      *
789      *  Like Grosch I implement context-sensitive FOLLOW sets that are combined
790      *  at run-time upon error to avoid overhead during parsing.
791      */
792     protected IntervalSet getErrorRecoverySet(Parser recognizer)
793     {
794 	ATN atn = recognizer.getInterpreter().atn;
795         RuleContext ctx = recognizer.ctx;
796         IntervalSet recoverSet = new IntervalSet();
797         while (ctx !is null && ctx.invokingState >= 0) {
798             // compute what follows who invoked us
799             ATNState invokingState = atn.states[ctx.invokingState];
800             RuleTransition rt = cast(RuleTransition)invokingState.transition(0);
801             IntervalSet follow = atn.nextTokens(rt.followState);
802             recoverSet.addAll(follow);
803             ctx = ctx.parent;
804         }
805         recoverSet.remove(TokenConstantDefinition.EPSILON);
806         //		System.out.println("recover set "+recoverSet.toString(recognizer.getTokenNames()));
807         return recoverSet;
808     }
809 
810     /**
811      * Consume tokens until one matches the given token set.
812      */
813     protected void consumeUntil(Parser recognizer, IntervalSet set)
814     {
815 	//stderr.writefln("consumeUntil(%s)", set.toString(recognizer.getTokenNames()));
816         int ttype = recognizer.getInputStream().LA(1);
817         while (ttype != TokenConstantDefinition.EOF && !set.contains(ttype) ) {
818             debug(ErrorHandling)
819             {
820                 //writefln("consume during recover LA(1)=%s", getTokenNames[input.LA(1)]);
821             }
822             // recognizer.getInputStream().consume();
823             recognizer.consume();
824             ttype = recognizer.getInputStream().LA(1);
825         }
826     }
827 
828 }